
Algorithms
Arthur Hoskey, Ph.D.

Farmingdale State College
Computer Systems Department

Today’s Lecture

 Insertion sort

© 2023 Arthur Hoskey. All
rights reserved.

Insertion Sort Overview

Insertion Sort

 Elementary sorting algorithm.

 Think of the array as being divided into a sorted portion
(left side) and an unsorted portion (right side).

 As the algorithm proceeds the sorted portion keeps
growing while the unsorted portion shrinks.

 The basic focus of the algorithm is to take an item from the
unsorted piece and move that item into its proper place in
the sorted piece (insert the item into the sorted piece).

 Similar to selection sort in that they both maintain a
portion of the array that is sorted and a portion that is
unsorted.

© 2023 Arthur Hoskey. All
rights reserved.

Insertion Sort – Comparison
Based Sort

Insertion Sort – Comparison Based

 Comparison Based Sort - Works by comparing the items
being sorted against each other to determine the order.

 Insertion sort is a comparison based sort.

© 2023 Arthur Hoskey. All
rights reserved.

Insertion Sort

 Sort the following list using insertion sort.

© 2023 Arthur Hoskey. All
rights reserved.

List

 0 1 2 3 4

16519710

Insertion Sort

 Insertion sort.

 The list is divided into a sorted section and an
unsorted section.

 Initially, only the first element is in the sorted
section (10 is the only element in sorted below).

© 2023 Arthur Hoskey. All
rights reserved.

List

 0 1 2 3 4

16519710

UnsortedSorted

Insertion Sort

 Insertion sort.

 General Procedure.
◦ Take an element from the unsorted section.

◦ Put that element in its correct place in the sorted section.

◦ Keep doing this until there are no more elements in the
unsorted section

© 2023 Arthur Hoskey. All
rights reserved.

List

 0 1 2 3 4

16519710

UnsortedSorted

Insertion Sort

 Insertion sort.

 The next element in unsorted is 7.

 Need to find its correct place in the sorted section.

 Start from the end of the sorted section and keep
swapping elements until you find the place where 7
belongs.

© 2023 Arthur Hoskey. All
rights reserved.

List

 0 1 2 3 4

16519710

UnsortedSorted

(in progress)

Current

7

Do we need

to swap?

Insertion Sort

 Insertion sort.

 7 and 10 needed to be swapped.

 Now the sorted section has two elements.

 We can now move on to the next element in the
unsorted section (on next slide).

© 2023 Arthur Hoskey. All
rights reserved.

List

 0 1 2 3 4

16519107

UnsortedSorted

Yes, 7 and 10 needed

to be swapped

Insertion Sort

 Insertion sort.

 The next element in unsorted is 19.

 Find its correct place in unsorted.

 First compare 19 with the element to its left (10).

 Do we need to do any swaps?

© 2023 Arthur Hoskey. All
rights reserved.

List

 0 1 2 3 4

16519107

UnsortedSorted

(in progress)

Do we need

to swap?

Insertion Sort

 Insertion sort.

 No swaps are necessary.

 Now there are three elements in the sorted section.

 Go to next slide…

© 2023 Arthur Hoskey. All
rights reserved.

List

 0 1 2 3 4

16519107

UnsortedSorted

No swap

was needed

Insertion Sort

 Insertion sort.

 The next element in unsorted is 5.

 First compare 5 with the element to its left (19).

 Do we need to do any swaps?

© 2023 Arthur Hoskey. All
rights reserved.

List

 0 1 2 3 4

16519107

UnsortedSorted

(in progress)

Do we need

to swap?

Insertion Sort

 Insertion sort.

 Had to swap 5 and 19.

 Do we need to swap 10 and 5?

© 2023 Arthur Hoskey. All
rights reserved.

List

 0 1 2 3 4

16195107

UnsortedSorted

(in progress)

Do we need to

swap more?

Insertion Sort

 Insertion sort.

 Had to swap 5 and 10.

 Do we need to swap 7 and 5?

© 2023 Arthur Hoskey. All
rights reserved.

List

 0 1 2 3 4

16191057

UnsortedSorted

(in progress)

Do we need to

swap more?

Insertion Sort

 Insertion sort.

 Had to swap 5 and 7.

 We are now done with inserting 5 in the sorted
section (it had to be shifted all the way through the
sorted section to the beginning).

 Go to next slide…

© 2023 Arthur Hoskey. All
rights reserved.

List

 0 1 2 3 4

16191075

UnsortedSorted

Insertion Sort

 Insertion sort.

 The next element in unsorted is 16.

 First compare 16 with the element to its left (19).

 Do we need to do any swaps?

© 2023 Arthur Hoskey. All
rights reserved.

List

 0 1 2 3 4

16191075

Sorted

(in progress)

Do we need to

swap more?

Insertion Sort

 Insertion sort.

 Had to swap 16 and 19.

 Do we need to swap 10 and 16?

© 2023 Arthur Hoskey. All
rights reserved.

List

 0 1 2 3 4

19161075

Sorted

(in progress)

Do we need to

swap more?

Insertion Sort

 Insertion sort.

 No more swaps.

 The unsorted section is now empty.

 DONE! The list is sorted.

© 2023 Arthur Hoskey. All
rights reserved.

List

 0 1 2 3 4

19161075

Sorted

All Passes and Swaps

 All passes and swaps shown here…

© 2023 Arthur Hoskey. All
rights reserved.

Start 10 7 19 5 16

Process 7 7 10 19 5 16

Done with 7 7 10 19 5 16

Process 19 7 10 19 5 16

Done with 19 7 10 19 5 16

Process 5 7 10 19 5 16

7 10 5 19 16

7 5 10 19 16

5 7 10 19 16

Done with 5 5 7 10 19 16

Process 16 5 7 10 16 19

5 7 10 16 19

Done 5 7 10 16 19

Green – Element in

sorted section

Blue – Element in

unsorted section

Red – Swap was done

Swap 7 and 10

No swaps done

Swap 5 and 19

Swap 5 and 10

Swap 16 and 19

Swap 5 and 7

Insertion Sort

void insertionSort(int[] list)

 Declare int temp, outer, i

 For outer = 1 to (list.length – 1)

 i = outer

 While (i > 0) && (list[i - 1] > list[i])

 // Swap elements

 temp = list[i]

 list[i] = list[i - 1]

 list[i - 1] = temp

 Decrement i

 endWhile

 endFor

© 2023 Arthur Hoskey. All
rights reserved.

Outer loop visits all

elements in the array

These three lines swap

adjacent elements

The inner loop moves the

current unsorted element

(list[i]) into its place in the

sorted portion of the array

Go to the next element (moving

towards beginning of the array)

Insertion Sort Analysis

 Now on to the analysis of insertion sort…

© 2023 Arthur Hoskey. All
rights reserved.

Insertion Sort Analysis

 Runtimes for different cases of input data sets.

 Average (randomized data) is O(n2) – In practice it will be better
than selection sort (inner loop will not always visit all elements
like selection sort must do). Does ¼(n2 – n) comparisons.

 Worst (sorted in reverse order) is O(n2) – It will always visit all
elements in the sorted portion of the list, and it will always do the
maximum number of swaps. Does ½(n2 – n) comparisons.

 Best (data is already sorted) is O(n) – The reason for this speed
up is that the inner loop will never run (no swaps are necessary).
It just iterates through the outer loop without doing any swaps.
Does (n-1) comparisons.

© 2023 Arthur Hoskey. All
rights reserved.

Insertion Sort – Big O (Worst)

 There are
n(n−1)

2
 comparisons.

Simplify:

 f(n) =
n(n−1)

2

 =
n2

2
 -

n

2

 = ½ (n2 – n)

 = n2 – n

 = n2

 f(n) ∈ O(n2)

© 2023 Arthur Hoskey. All
rights reserved.

Distribute n

Factor out 1/2

Remove lower order terms

Insertion Sort – Big O (Average)

 The worst case is (from previous slide):

 = ½ (n2 – n)

 In the worst case it will compare the current element
against all elements of the sorted section.

 In the average case it will only do half of those
comparisons (only needs to visit half of the items in the
sorted section on average).

 Therefore, the average case will be:

 = ½ * ½ (n2 – n)

 = ¼ (n2 – n)

 = n2 – n

 f(n) ∈ O(n2)

© 2023 Arthur Hoskey. All
rights reserved.

Insertion Sort Analysis

 Runtimes for different cases of input data.

 Best case input data speeds up the algorithm.

 Data that is basically sorted will also run very
fast (only a few extra swaps are necessary).

© 2023 Arthur Hoskey. All
rights reserved.

Input Data Ω(𝑔 𝑛) 𝑂(𝑔 𝑛) Θ(𝑔 𝑛)

Average Case n2 n2 n2

Best Case (already
sorted low to high)

n n n

Worst Case (sorted
high to low)

n2 n2 n2

End of Slides

 End of Slides

© 2023 Arthur Hoskey. All
rights reserved.

	Slide 1: Algorithms
	Slide 2: Today’s Lecture
	Slide 3: Insertion Sort Overview
	Slide 4: Insertion Sort – Comparison Based Sort
	Slide 5: Insertion Sort
	Slide 6: Insertion Sort
	Slide 7: Insertion Sort
	Slide 8: Insertion Sort
	Slide 9: Insertion Sort
	Slide 10: Insertion Sort
	Slide 11: Insertion Sort
	Slide 12: Insertion Sort
	Slide 13: Insertion Sort
	Slide 14: Insertion Sort
	Slide 15: Insertion Sort
	Slide 16: Insertion Sort
	Slide 17: Insertion Sort
	Slide 18: Insertion Sort
	Slide 19: All Passes and Swaps
	Slide 20
	Slide 21: Insertion Sort Analysis
	Slide 22: Insertion Sort Analysis
	Slide 23: Insertion Sort – Big O (Worst)
	Slide 24: Insertion Sort – Big O (Average)
	Slide 25: Insertion Sort Analysis
	Slide 26: End of Slides

